

HC4000D03

Preliminary Datasheet Hybrid Coupler 3 dB, 90°

Rev A1.0

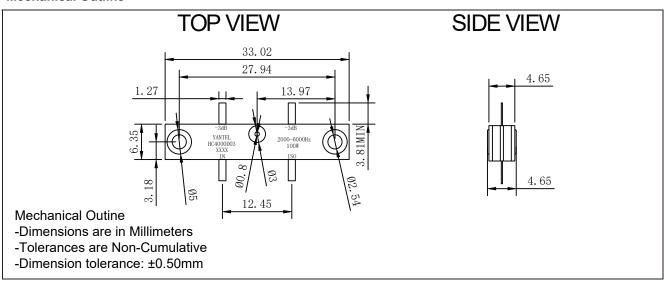
Description

High-power broadband surface-mounted and embedded coupler series, realizing the power synthesis and distribution of microwave high-power amplifier system, signal acquisition and other functions. Used in active phased array radar, microwave transceiver components, microwave amplifiers, radio stations, satellite communications and other projects, to provide standardized and customized high-quality and reliable products.

The performance and reliability indexes are in line with international products, and the pin definition and package size are compatible with international products, realizing 100% in-situ replacement.

Features:

- 2000-6000 MHz
- High Power
- Very Low Loss
- Tight Amplitude Balance
- High Isolation
- Low VSWR
- Good Repeatability
- RoHS Compliant
- Tape & Reel Package available

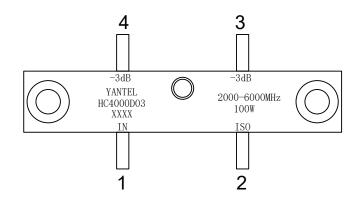

Electrical Specifications

Frequency	Isolation	Insertion Loss	VSWR
MHz	dB Min	dB Max	Max : 1
2000 - 6000	18	0.30	1.30
Amplitude Balance	Phase Balance	Power	Operating Temp.
Dalatice			
dB Max	Degrees	Avg. CW Watts	°C

Notes

- 1. All the above data are based on specified demo board.
- 2. Insertion loss:Thru board loss has been removed.

Mechanical Outline



127

Yantel Corporation

HC4000D03 Preliminary Datasheet Hybrid Coupler 3 dB, 90°

Hybrid Coupler Pin Configuration

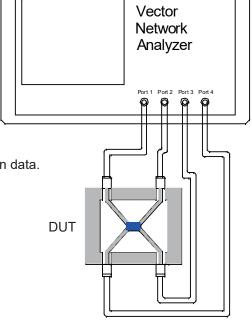
PORT CONFIGURATION					
INPUT	1	2	3	4	
1		ISOLATION	-3dB<0 DEG	-3dB<-90 DEG	
2	ISOLATION		-3dB<-90 DEG	-3dB<0 DEG	
3	-3dB<0 DEG	-3dB<-90 DEG		ISOLATION	
4	-3dB<-90 DEG	-3dB<0 DEG	ISOLATION		

HC4000D03

Preliminary Datasheet Hybrid Coupler 3 dB, 90°

Definition of Measured Specifications

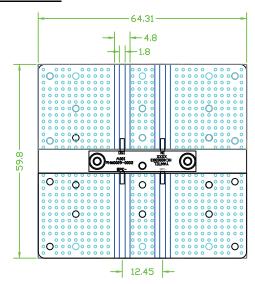
Parameter	Definition	Mathematical Representation
VSWR (Voltage Standing Wave Ratio)	The impedance match of the coupler to a 50Ω system. A VSWR of 1:1 is optimal.	$\text{VSWR} = \frac{V_{\text{max}}}{V_{\text{min}}}$ $\text{Vmax} = \text{voltage maxima of a standing wave}$ $\text{Vmin} = \text{voltage minima of a standing wave}$
Return Loss	The impedance match of the coupler to a 50Ω system. Return Loss is an alternate means to express VSWR.	Return Loss (dB)= 20log $\frac{VSWR + 1}{VSWR - 1}$
Insertion Loss	The input power divided by the sum of the power at the two output ports.	Insertion Loss(dB)= 10log $\frac{P_{in}}{P_{cpl} + P_{transmission}}$
Isolation	The input power divided by the power at the isolated port.	Isolation(dB)= 10log $\frac{P_{in}}{P_{iso}}$
Phase Balance	The difference in phase angle between the two output ports.	Phase at coupled port – Phase at transmisson port
Amplitude Balance	The power at each output divided by the average power of the two outputs.	$10log \frac{P_{cpl}}{\left(\frac{P_{cpl} + P_{transmission}}{2}\right)} or 10log \frac{P_{transmission}}{\left(\frac{P_{cpl} + P_{transmission}}{2}\right)}$

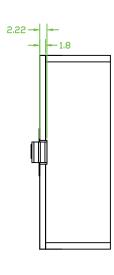

Test Method

- 1. Calibrating your vector network analyzer.
- 2. Connect the VNA 4 Port to DUT respectively.
- 3. Measure the data of coupling through port 1 to port 4(S41).
- 4. Measure the data of transmission through port 1 to port 3(S31).
- 5. Measure the data of isolation through port 1 to port 2(S21).
- 6. Measure the data of phase port 4 & port 3(port 1 feeding).
- 7. Measure the data of return loss port 1, port 2, port 3 & port 4.
- 8. According to the above data to calculate insertion loss, amplitude balance & phase.

Note:

1. When calculating insertion loss at room temperature, demo board loss should be removed from both coupling & transmission data. Please refer to the below table for demo board loss:

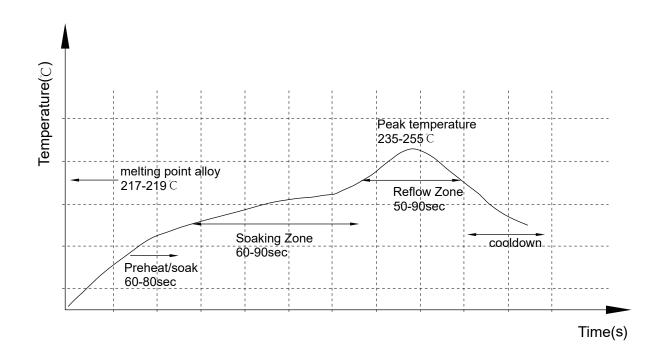

Frequency Range(MHz)	Demo Board Loss (dB) @25℃
470-860	0.07
800-1000	0.10
1200-1700	0.15
1700-2000	0.15
2000-2300	0.20
2300-2700	0.25



HC4000D03

Preliminary Datasheet Hybrid Coupler 3 dB, 90°

Recommended PCB Layout



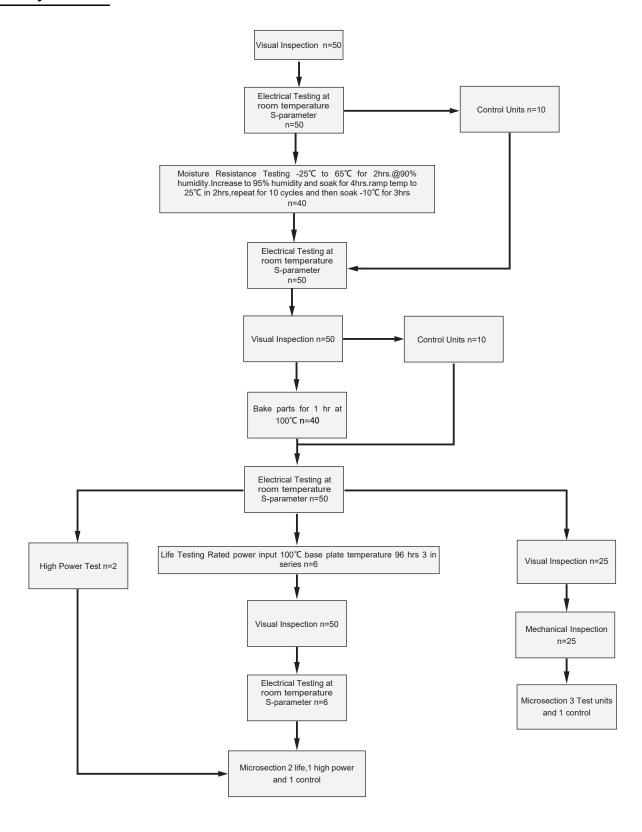
NOTE:A

TRACE WIDTH IS SHOWN FOR ROGERS RO3003 WITH DIELECTRIC THICKNESS $0.032^{\circ} \pm 0.0015^{\circ}$; COPPER: 1 OZ. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED.

Reflow Profile

HC4000D03 Preliminary Datasheet

Preliminary Datasheet Hybrid Coupler 3 dB, 90°


Reliability Test Flow

HC4000D03 Preliminary Datasheet

Preliminary Datasheet Hybrid Coupler 3 dB, 90°

Reliability Test Flow

